Sediment Tubes

Encouraging natural colonization of boat-damaged seagrass beds, this technique involves filling fabric tubes with sediment and seagrass seeds to speed up recovery, and placing them along damaged scars from anchors and propellers to ensure reconnection of the seagrass meadow.  

By returning these damaged segments to the appropriate elevation, the intervention prevents further erosion and scouring by water currents as well as protects peripheral rhizomes from excessive sunlight exposure.

Hessian Mattresses

Hessian mattresses are an innovative and eco-friendly solution for seagrass restoration projects. Made from biodegradable jute material, these mats provide a sediment-free, low-cost method for transplanting seagrass seedlings to degraded coastal areas, including sites impacted by mooring scars. By anchoring seagrass seedlings within the hessian fabric, the mattresses help stabilize the plants, protect them from being swept away by currents, and encourage healthy root establishment. Over time, the hessian material naturally decomposes, leaving behind a flourishing seagrass bed that restores marine biodiversity, improves water quality, and provides essential habitats for marine life.

Riparian Buffer Zones

Similar names: Conservation buffers, Stream corridor bank enhancement, Riparian buffer strips and hedges, Terrestrial buffers, Riparian buffer systems

Riparian buffer zones are the interface between land and a river, stream or creek often characterised by riparian woodlands, forests and riparian strips. The plant habitats and natural communities along the river banks are better known as riparian vegetation and they are characterised by hydrophilic plants, bushy vegetation and forest systems. The presence of riparian buffer zones is crucial due to their role as natural biofilters and their protection of aquatic environments from excessive sedimentation, polluted surface runoff and erosion. Furthermore, they provide shelter, shade and food for many aquatic species.

Often the riparian zones are damaged by various anthropogenic activities such as agriculture, construction and silviculture. In this case, biological restoration can take place, with the most common practices being erosion control and revegetation. Furthermore, in some places riparian zones are fully lacking and reintroducing them could bring plenty of benefits to the local ecosystems. Because of the great biological function these systems have in supporting a diversity of species and landscapes, they are in some places subject to national protection mechanisms.

Initiating and restoring riparian buffers is crucial for the healthy functioning of riparian ecosystems. The vegetation around the banks of the river slows the flow of water which controls the power of the river and the destruction that could occur downstream. When near agricultural land, the riparian buffers filter various pollutants from agricultural runoffs, enhancing water quality via biofiltration. 

Disclaimer: Check whether Riparian Buffer Zones are subject to national protection in your area, as this could help with their protection and restoration.

Muvuca Direct Seeding

Similar names: Seed-based land restoration, Direct sowing

Muvuca direct seeding is a nature restoration method, where a mix of seeds from dozens of native species at different successional stages are planted simultaneously into the ground. The method mimics natural regeneration mechanisms such as seed soil banks and seed rain. Better known conventional practice is direct seeding’s popular counterpart – transplanting, which is a technique of moving plants from one location to another, usually to preserve the optimal condition of the seedlings. Despite providing more control over the plant’s growth, transplanting doesn’t allow for a high variety of plant seeds to grow simultaneously.

The Muvuca system uses a high diversity of species and ensures longer-term operational efficiency, which in return enables mechanised restoration with reduced planting, low maintenance in terms of time and reduced costs. Planting can be done either manually or mechanised (using machinery such as tractors), which enables the scalability of the intervention. Furthermore, the grown plants through Muvuca become more robust and resistant to various weather conditions, which results in stronger root systems and overall healthier vegetation. Overall, Muvuca direct seeding can contribute to the scaling up of restoration efforts, while reducing costs and increasing the species diversity. Meanwhile, the demand for native species enables the promotion of conservation and well-being.

Composting

Similar names: Organic Amendments

Composting is an effective method of organic waste management, involving the controlled aerobic decomposition of organic matter, such as plant and animal waste. This process results in Compost, a stable, humus-like material that can be directly applied to soil. The primary goal of Composting is to reduce the amount of organic waste sent to landfills while providing economic, environmental, and social benefits. When used in soil, Compost enriches it, reducing the need for chemical fertilizers and lowering potential methane emissions from landfills.

The Composting process (Source)

Due to its recycling nature, Composting is a cost-effective tool for managing organic waste, utilizing leftover materials from land-based processes. It offers a range of co-benefits that enhance land and soil regeneration practices. Agronomically, Composting supports crop yields, improves soil moisture content and workability, enhances crop nutritional quality, and suppresses weeds, pests, and diseases. Additionally, Composting provides broader environmental benefits by supplying essential nutrients (such as mineralized nitrogen, phosphorus, and potassium), reducing soil erosion, sequestering carbon, and improving soil biological properties and biodiversity.

Furthermore, Compost can be used as a mulching material in landscaping, garden management, and the restoration of abandoned quarries, among other applications.

Agricultural benefits of Composting (Source)

Stone Lines

Similar names: Cordons pierreux, stone bunds.

Stone lines are stones grouped in the shape of a line and placed along contours. The stones can be of different sizes. The goal of these lines is to conserve the soil and reduce runoff, as they are used to slow down water runoff and break its velocity. Hence, they increase infiltration and retain sediment and seeds to make water and nutrients available for crops. Stone lines are most suitable for water harvesting on slightly sloping plains (up to 5%) in semi-arid regions. For slopes starting from 5%, stone bunds can be used (see eyebrow terraces).

Stone lines are an easy and cheap intervention if stones are available in the immediate surroundings. This intervention is widely used in Africa, both in dry and humid areas. Moreover, stone lines are often used in combination with Zai Pits intervention for the rehabilitation of degraded and crusted lands. It is applied in semi-arid areas, on sandy and loamy soils where the slope is lower than 5%. A great example can be seen in Niger, where the combination of the two techniques is applied to capture runoff, making infiltration more efficient and improving nutrient availability. The pits have a diameter of 20-30 cm, and a depth of 20-25 cm and are spaced about 1 m apart in each direction. Stone lines are spaced 20-25 m apart on slopes of 2-5%. With this layout stone lines are quite small, usually, three stones wide and only one stone high and they are placed, along the contour lines, by hand. Very often grass grows between the stones leading to a greater infiltration and helping the accumulation of fertile sediments. Maintenance-wise, stone lines need to be repaired annually, in particular after heavy precipitation events.

Vegetative Lines

Vegetative lines involve the planting of lines of vetiver grass following the contour lines, along stream banks and roadsides, to create a hedge. These hedges act like semi-permeable barriers, aimed to hinder surface erosion as they slow down run-off and retain sediments picked up by excess rainwater. This setup improves water infiltration and helps to increase the ground moisture level. Their root systems also help stabilise the soil and prevent further soil erosion. Thus this provides increased stabilisation of embankments, gully erosion, roads and slopes. Furthermore, water runoff and soil runoff reductions are observed, at around 57% and 80% respectively.

Vetiver grass can grow on slopes of > 50% and can be planted on a high variety of soils (red latosols, black cracking vertisols, roadside rubble, C-horizon gravels, laterites, sodic, and saline soils). Furthermore, vetiver grass is resistant to different types of climatic conditions: rainfall from 600mm to 6000 mm /year and extreme temperatures of -14°C to 55°C, and could survive several months submerged in water. Vetiver grass can support high levels of toxicity by manganese, aluminium and other metals and high levels of soil acidity, salinity, alkalinity, and acid sulphate conditions. All in all, they provide great solutions as they are non-invasive, fire resistant, and regrow quickly and be used as mulch, fuel (vetiver energy value is 55% the energy value of coal), and as fodder. Finally, vetiver grass is very efficient in stabilising Semi-Circular Bunds, Eyebrow Terraces or Negarim.

Very similar to the intervention described above is the so-called “Vegetative lines with cactus”. This intervention is based on the same principle as the Vegetative lines with vetiver grass, but it is suitable for drier environmental conditions (0 – 600mm). Like some other interventions, over time, this type of intervention can lead to the formation of terraces due to tillage and water erosion between the hedges.

Fanya Chini

Similar names: Retention trenches, infiltration trenches

The name Fanya chini means “throw it downwards” in Kiswahili. It consists of trenches and earthen ridges facing downslope. This intervention aims to reduce soil erosion by breaking down long slopes into smaller sections. Thus, the speed of runoff will decrease, and water can infiltrate into the soil between the bunds. This will result in a reduction of nutrient leaching and increased water availability for crops. Fanya chini is common in areas with 300-600 mm of annual rainfall on 1-25% slopes. It is suitable for all types of relatively permeable soils (e.g. alluvial, red, laterite, brown, and shallow and medium black soil). Still, it doesn’t work very well with clayey soils or vertisols as these are not permeable.

One of the main benefits of Fanya chini is that it limits soil erosion from water runoff, and simultaneously improves water retention in the soil and increases water availability for crops. Furthermore, an increase in yield is observed, as well as improved soil fertility.

Eyebrow Terraces

Similar names: Banquettes, Boomerangs, Terraces, Stone Bunds, Eyebrow Systems, Eyebrow Basins.

Eyebrow Terraces are a form of microcatchment water harvesting system. They are handmade micro basins, in the shape of an eyebrow, and are often made from soil and stones. Their main goal is to facilitate vegetation growth on steep slopes by collecting runoff water from a small catchment area and having it infiltrate the soil. This way, it is stored in the root zone and will be available for crops. They are usually situated on hillsides and can be used on up to 50% of slopes. The steeper the slope, the more the bunds have to be reinforced with stones. Eyebrow Terraces work well in areas characterised by 200-600 mm of annual rainfall. Reinforcing Eyebrow Terraces with stones on steep slopes makes them more resistant to the increased water speed caused by the slope. Instead, they can be some metres apart. After completion, the pit uphill from the eyebrow may fill with sediments and soil, thereby giving rise to terraces.

Some of the main advantages of Eyebrow Terraces are that they reduce the risk of flooding, while simultaneously increasing the on-site conversion of water through the facilitation of filtration. Furthermore, the intervention improves the yields in the area, by increasing the soil organic content, as sediments are trapped in the terraces.

Exclosures & Enclosures

Enclosures are fencing structures that restrict animal and human access to land with the goal of supporting the regeneration or protection of said land. Enclosures also refer to the practice of fencing-off an area in order to protect it from human use and animal intrusion. The main goal of Enclosures through fencing is to allow natural regeneration and rehabilitation of degraded lands within the enclosed space. This intervention fosters natural regeneration and helps to restore organic matter and a healthy soil structure. Enclosures can also be used to change the cover of the land to allow time for new land coverage (vegetation) to be established. Enclosures can be applied in a variety of different landscapes and environmental conditions. This technique is a relatively cheap intervention if the materials are available on site but can be somewhat more expensive where materials need to be acquired or where more sophisticated Enclosures are built. Fencing could be done for a permanent or temporary use, and this is defined by the goal of the project. 

Some of the major features of Exclosures and Enclosures are the economic benefits linked to the environmental benefits coming as a result of their implementation. Firstly, the increased vegetation that comes as a result of fencing increases vegetation which in return enhances water-retention capacity of soil. This helps to both replenish the nutrients in the soil and to restore the ability of the soil to retain water.  Furthermore, the enhanced water retention capacity of the soil reduces the exposure to flood damage. When it comes to agriculture, Enclosures and Exclosures improve long-term returns from crop production and pastureland, as the long-term productivity of the land is improved by improved and regenerated soils. This helps to increase crop yields quality. Exclosures and Enclosures can increase security of land tenure and make property rights clearer due to clear demarcations of the boundaries of your land. This can, in turn result in a higher willingness to invest in the land. Finally, Enclosures and Exclosures provide an opportunity for complimentary economic activities to be realised, such as harvesting grass (‘cut and carry’), extraction of wood, or growing of fruits and vegetables. Growing additional crops can also increase and diversify income streams and contribute to enhanced food security.