Zai Pits

Similar names: Chololo pits (Tanzania), Zaï pits (Burkina Faso), tassa (Niger), agun pits (Sudan), kofyarpits (Nigeria), yamka (Kyrgyzstan), planting pits.

Zai Pits are small basins in which the seeds of annual or perennial crops are planted. The pits are then filled with Mulch, manure, compost or good soils to increase soil fertility and the capacity of the soils to retain water. Zai Pits can be beneficial for soil conditions and they are a very successful method which can allow for the growth of vegetation in dry areas. They are also very efficient in protecting seeds and soil organic matter from being washed away from water runoff. One of the major advantages of Zai Pits is that it increases water filtration, through the collection and concentration of water for the plants due to increasing termite activity. Moreover, Zai Pits can collect more than 25% or more of run-off water. This decreases water run-offs and evaporation. When looking at the bigger picture, Zai Pits can improve soil fertility and agricultural productivity of several crops and can increase production by up to 500% if well executed.

Zai Pits are an efficient method to increase yield productivity due to more water and nutrients available. This intervention is most suitable for flat or gently sloped terrains (0-5%) with a precipitation range of 350-600 mm/y.  Zai Pits can also work with other techniques such as stone contours and hand-dug trenches.

Semi-Circular Bunds

Similar names: Demi-Lunes, Banquettes, Boomerangs, Water Bunds, Earth Bunds, Earthworks, Micro Basins, Half-Moons, Earth Smiles

The technique of creating Semi-Circular Bunds belongs to the overall category of water harvesting interventions and consists of half-moon-shaped basins dug in earth. The main goal of water harvesting, as the name suggests, is to collect water, and to make moisture available for vegetation for a longer time. This type of micro-catchment water harvesting technique is suitable for slopes up to 15%, however Bunds made of earth are seldom used in areas with slopes greater than 5% with a precipitation rate higher than 300 mm/y. At lesser slopes, Semi-Circular Bunds are also used in areas with higher rain falls.

Semi-Circular Bunds are a low cost intervention, where the time requirements of bund construction are very low as they can be implemented very fast, especially when the raw materials (plant residues) are available. The intervention also allows for the cultivation of plants and species that would not grow in previously dry conditions. Overall, the direct benefits of Semi-Circular Bunds can be realised in the short term and often after one year of implementation.

Exclosures & Enclosures

Enclosures are fencing structures that restrict animal and human access to land with the goal of supporting the regeneration or protection of said land. Enclosures also refer to the practice of fencing-off an area in order to protect it from human use and animal intrusion. The main goal of Enclosures through fencing is to allow natural regeneration and rehabilitation of degraded lands within the enclosed space. This intervention fosters natural regeneration and helps to restore organic matter and a healthy soil structure. Enclosures can also be used to change the cover of the land to allow time for new land coverage (vegetation) to be established. Enclosures can be applied in a variety of different landscapes and environmental conditions. This technique is a relatively cheap intervention if the materials are available on site but can be somewhat more expensive where materials need to be acquired or where more sophisticated Enclosures are built. Fencing could be done for a permanent or temporary use, and this is defined by the goal of the project. 

Some of the major features of Exclosures and Enclosures are the economic benefits linked to the environmental benefits coming as a result of their implementation. Firstly, the increased vegetation that comes as a result of fencing increases vegetation which in return enhances water-retention capacity of soil. This helps to both replenish the nutrients in the soil and to restore the ability of the soil to retain water.  Furthermore, the enhanced water retention capacity of the soil reduces the exposure to flood damage. When it comes to agriculture, Enclosures and Exclosures improve long-term returns from crop production and pastureland, as the long-term productivity of the land is improved by improved and regenerated soils. This helps to increase crop yields quality. Exclosures and Enclosures can increase security of land tenure and make property rights clearer due to clear demarcations of the boundaries of your land. This can, in turn result in a higher willingness to invest in the land. Finally, Enclosures and Exclosures provide an opportunity for complimentary economic activities to be realised, such as harvesting grass (‘cut and carry’), extraction of wood, or growing of fruits and vegetables. Growing additional crops can also increase and diversify income streams and contribute to enhanced food security.

Grazing Management

Sustainable Grazing Management is about managing pasture and livestock in a way that prioritizes the long-term capability of a landscape. Its goal is to maintain healthy and productive pasturelands and provide economic benefits, and can be applied to range, pasture, and grasslands in all types of topographies and climates. The way grasslands are managed both directly and indirectly impacts the ecological health of the surrounding ecosystem, including the local water and mineral cycles as well as biological succession, in turn also creating socioeconomic effects for farmers and herders.

As opposed to more traditional and unsustainable practices such as extensive or continuous grazing where livestock graze on one large, open pastureland, there are several methods of more sustainable Grazing Management. Two examples of this are Rotational Grazing Management and Integrated crop-livestock grazing.

Farmer Managed Natural Regeneration

Similar names: treecovery, natural regeneration, tree-based regeneration, Kisiki Hai

Natural regeneration is a biological process that can be assisted and managed by farmers and landowners to increase the recovery of native ecosystems and their functions. Usually practised on wooded agricultural land, Farmer Managed Natural Regeneration (FMNR) is an approach that aims to increase the number of trees by protecting, managing and pruning existing tree and shrub stumps and roots to create the optimal conditions for them to flourish and germinate seeds again. 

An advantage of FMNR is the freedom that farmers have in implementing and adapting this technique to their specific landscape. Farmers can make decisions based on their knowledge and experience and choose which tree species they want to target, for example, fruit trees. Farmers can also select which species they want to save or remove during the pruning process, as well as when and what preferred tree density they want.

Tree planting

Similar names: reforestation, afforestation, planting saplings, planting seedlings

Tree planting is a technique whereby tree seedlings are transplanted for a variety of different purposes (such as forestry, land reclamation or landscape restoration). One can refer to the tree planting technique with the name of afforestation or reforestation. Afforestation indicates that the area being planted has not been recently forested. Reforestation means the area being planted was forested in the recent past. In the field of landscape restoration, tree planting is a means to tackle soil erosion thereby reducing the risk of floods and landslides. Tree leaves protect against rainfall: by intercepting raindrops, tree leaves slow down their fall and reduce their erosion power. Tree roots, on the other hand, serve as an anchor for soil, especially on sloping terrains. Planting trees also contributes to the prevention of soil erosion by improving water infiltration in the ground, so that water runoff will be reduced. Lastly, trees play an important role in restoring degraded lands, because they prepare the soil for future crops by providing it with organic matter through dead leaves and by creating good conditions through the roots.

Tree planting initiatives provide several economic benefits, such as income from wood, fuel, and non-timber forest products, as well as cost savings and job creation. Social benefits include clearer tenure security, community engagement, and a sense of shared responsibility for the environment. These initiatives also serve as educational platforms, raising environmental awareness among community members, especially youth. Additionally, they improve air quality and help preserve traditional knowledge related to native tree species and their uses.

NOTE: If the main desired outcome is to restore a forest, tree planting should only be implemented where the adoption of cheaper and more time-efficient interventions such as Assisted Natural Regeneration (ANR) or Farmer Managed Natural Regeneration (FMNR) are not possible. 

Conservation Agriculture

Similar names: No-Tillage Agriculture, No-Till Farming, Zero Tillage, Zlimate-Smart Agriculture

The Conservation Agriculture approach is a system of managing agricultural lands based on certain farming practices. It aims to achieve sustainable production through minimizing soil disruption, while preserving soil quality and improving its biodiversity. Indeed, the main goal of Conservation Agriculture is to tackle land degradation and increase efficiency in the use of water and nutrients. For this reason, this technique works well with degraded agro-ecosystems as it helps in the restoration of resources, and to increase profits and food security. Beside the conservation of soil structure and fertility, this practice plays an important role in preventing soil erosion caused by machineries, especially in hilly and mountainous areas.

Mulching

Similar names: Covering, Groundcover, Topping, Blanket Mulching

Mulching involves applying a layer of material to the soil surface mainly in order to improve soil health and enhance plant growth. Either organic or inorganic materials can be used as mulch. Mulching simulates a natural forest environment. In a natural forest, soil is covered by leaves and organic material, and it is rich in living organisms that recycle nutrients. Mulch can be composed of a wide variety of materials (see method of application) and has a number of potential uses. It is an especially helpful technique in climactic zones with high evaporation rates. 

The physical and ecological benefits of Miyawaki are numerous. Firstly, the layer of mulch helps retain soil moisture by reducing the soil’s exposure to direct sunlight and preventing evaporation. Mulching is also effective at stifling weed growth by physically impeding their growth and stopping their access to sunlight needed for photosynthesis (amongst other mechanisms of weed prevention such as allelopathy with certain Mulching materials). Other benefits of Mulching include that it helps prevent soil erosion, is an effective means of regulating soil temperature by acting as insulation and improves the fertility and structure of soil (especially organic Mulching). Please refer to the conditions section for information on potential problems with Mulching so as to ensure the best chances of successful implementation.

Tilling

Similair names: ploughing

Tilling is one of the most important and widely used agricultural techniques in the world. It dates back to ancient times. Tilling involves physically manipulating the soil to achieve optimal conditions for seed sowing and crop planting. Different tools and techniques for tilling agricultural land exist. Put simply, tilling consists of breaking, cutting, or turning over the first layer of soil (usually between 15 and 25 cm) before planting crops. This helps to achieve a range of potential benefits such as increased aeration of the soil, increased water infiltration capacity, improved nutrient availability, burying of leftovers of previous crops, and weed control. These effects provide good conditions for plant growth and root establishment. Although tilling aims to improve soil structure for planting crops, excessive tilling can have the opposite effect and create a detrimental impact on the soil by leading to a depletion of soil microorganisms and fertility. By loosening the soil, tilling also increases the vulnerability of land and soil to erosion.

Tilling offers several ecological and socioeconomic benefits. Ecologically, it improves soil aeration and drainage by breaking up compacted soil, facilitating better root growth and nutrient uptake, and aids in weed control by disrupting weed roots, reducing competition for resources. Socioeconomically, tilling enhances soil structure, creating a favourable seedbed for planting, which can boost crop yields and contribute to food security. It also accelerates nutrient cycling by decomposing organic matter and releasing nutrients back into the soil, reducing the need for chemical fertilizers. However, excessive tilling can lead to soil degradation and nutrient loss.

Water Spreading Bunds

Similar names: diversion embankments, diversion bunds, low lying crescent embankments, spate irrigation (general term).

Water spreading bunds is a technique in the category of floodwater farming (also called spate irrigation) which consists of the use of earthen bunds, usually applied where trapezoidal (regular) bunds are not suitable. Regular bunds may not be suited for area where runoff rates are high and they would be damaged, or where the crops may suffer from flooding.

The goal of the water spreading bunds is, as the name suggests, to spread water and not to confine it, like trapezoidal bunds do. They are intended to spread floodwater that has been either diverted from a watercourse or has reached the floodplain. The technique of water spreading bunds is very site-specific, as it can only be used on lands close to a watercourse, usually on alluvial fans or floodplains, and is characterized by almost flat slopes (up to 1%). Water spreading bunds are usually applied on even lands with deep and fertile soil, with a precipitation rate within 150-300 mm. Therefore, hyper-arid or arid areas where floodwater farming is often the only possibility to achieve fodder or crop production.